
2025/09/09 01:36 1/5 Notes on the XenceLabs Quick Keys

pup.casa Docs - https://wiki.pup.casa/

Notes on the XenceLabs Quick Keys

Bought this off amazon the other day and it's an interesting device, so I'm documenting what I find
about it.

Hardware info

USB: VID 0x28bd PID 0x5202 - Manufacturer “HANVON UGEE”, advertises no version or serial
number.

USB pcaps pending - currently on a mac machine and capturing USB traffic on a mac requires
disabling system integrity protection.

Device has a rotary encoder, 10 buttons, a power slider switch, RGB light ring, green power LED, blue
connectivity LED, power slider, internal battery (capacity appears to be 1950mAh from the FCC
internal photos, chemistry unknown), OLED screen (low pixel density, white phosphor)

Device appears to transmit only signals (ie., button press and rotary wheel moving +/- steps);
although it appears to be using HID, it does not present as a regular input device and requires the
driver components for actioning anything.

The device seems to have an FCC ID - 2AYM6-K02A. The firmware version indicates it as K02-B,
making me wonder if this device is not actually compliant with the FCC as it does not display the
regulatory mark anywhere.

Software info

Software seems to be a generic XenceLabs-branded application that works for both the QuickKeys
and other products offered by the company.

The software is delivered as a DMG disk image, which contains an xar compressed pkg (on Mac).
Within this, there is a set of preinstall and postinstall scripts (preinstall removes any existing copies of
the software, and closes any running instances; postinstall runs a loop waiting for the driver and other
software to be installed) and the actual software. The scripts and software are stored in gzipped cpio
archives.

The software archive contains a LaunchAgents plist (com.xencelabs.xencelabstablet.plist)
which registers a launch agent com.ugee.XencelabsAgent to be started during login and during a
logged-in session, and launches XencelabsAgent with the command-line argument /mini. It
registers the com.ugee.Xencelabs mach service.

The software archive also contains a set of applications in a tree:

Xencelabs
.guide (contains a copy of LGPLv3, some images, and some plists)

Info.plist: {“Mode”: “0”}
com.xencelabs.config.plist: {“guide”: 0}

Last update: 2023/06/26 14:17 notes:hw:xencelabs-quickkeys https://wiki.pup.casa/notes:hw:xencelabs-quickkeys

https://wiki.pup.casa/ Printed on 2025/09/09 01:36

com.xencelabs.config_run.plist: {“guide”: 1, “KeyBoard”: 0}
Xencelabs.app
UninstallXencelabs.app
Driver

XencelabsAgent.app
Contents/MacOS/DriverUpdate.app
Contents/MacOS/FirmwareUpdate.app

XencelabsDriver.app
XencelabsGuide.app

All applications appear to be universal binaries with both arm64 and amd64 builds.

Going by the system permissions prompts that come up when various inputs from the device are
received by the computer, XencelabsDriver handles scrolling and XencelabsAgent handles
keypresses. This is known because both applications request the ability to control the system via
accessibility features. Rudimentary binary analysis shows that if this is denied, the programs will
execute tccutil reset Accessibility on themselves to ask again for the permission.

Firmware info

The device came loaded with firmware version K02-B 20210824, and the diagnostic tool states the
“keyboard selection” is English.

Observations relating to the stock software and firmware

Scrolling with the rotary encoder appears to be handled inefficiently, either in-hardware or via the
software. Turning the wheel too quickly will result in maybe scrolling up or down by one step, or may
result in no scroll at all.

The OLED itself seems to receive its displayed data from the computer - there are references to
functions for writing OLED data in the software. This may explain why the screen updates so slowly in
normal use - I can see the screen update in blocks.

There's a small amount of travel between the rotary encoder's centre button and any actual
resistance.

The green LED (power) fades in a “breathing” animation pattern when the battery is charging, but
becomes a solid green when the battery is full. The blue LED (connectivity) flashes when the device is
not connected, and fades in a breathing animation pattern when it is connected via USB, but is a solid
blue when connected via the dongle. When connected and charging, both LEDs appear to be
synchronised.

The device can be turned off while plugged in; it will continue charging while off, but will not operate.
Plugging it in when turned off will turn it on. It's unclear what the utility of it being plugged in but off is
- preventing screen-burn when charging?

When first turned on wirelessly, or when first plugged in, the device will not operate without the
software installed. The software itself claims to include drivers, but this is a USB HID device, which

2025/09/09 01:36 3/5 Notes on the XenceLabs Quick Keys

pup.casa Docs - https://wiki.pup.casa/

notably does not use conventional drivers, so realistically the software could be reverse-engineered
as open-source software. Plugging the device in or turning it on with any of the ten buttons held down
does not appear to invoke any kind of alternate mode (eg. DFU).

The software allows you to input a name for the hardware, but the name is only stored locally.

Observations relating to the hardware

The eight buttons surrounding the screen are made of metal, as is the mode switch button below
them. The button in the centre of the rotary encoder is part of the rotary dial itself.

The device seems very well-built, and has a rubber base to prevent slipping when in use - a nice
addition, but over the course of at least a decade, it will eventually degrade and perish, and need to
be removed.

The device has a kensington lock slot - I wonder if they intend this for businesses?

The bottom-right corner of the device has a slot that would normally be for a fingernail or something
to pull the back panel off. I haven't tried to pull it off yet - there's little to no flex when trying with my
fingers, which leads me to wonder if it's just an aesthetic touch.

The dongle

The device contains a battery so that it can be used wirelessly - my first thought was that this was via
bluetooth, but this does not appear to be the case. It came with a dongle, which I would assume
means it runs over normal 2.4GHz or perhaps 430/868/915MHz.

When first plugged in, the dongle appears to be identified by the system as a keyboard.

USB: VID 0x28bd PID 0x5203 - Manufacturer “HANVON UGEE”, again advertising no serial number or
version.

It has model number ACD12-A and FCC ID 2AYM6-ACD12A

With the dongle plugged in, the software allows you to manage up to two “pairings” for the dongle.
The device appears to be pre-paired to slot 2, and the software lists it as having ID (address?)
f483b3LLNNLL (last three octets anonymised but available on request) - this looks very much like a
bluetooth MAC address, making me wonder if the dongle is simply bluetooth.

The FCC-published information about this device indicates that yes - this is simply bluetooth/BLE. The
detailed emissions report includes a screenshot of nRFgo Studio, which suggests a Nordic
Semiconductor nRF is being used for BLE transmission (which would make sense).

Diagnostic information in the software reports the dongle's firmware as ACD12-B 20201214094214
15.3.0

Last update: 2023/06/26 14:17 notes:hw:xencelabs-quickkeys https://wiki.pup.casa/notes:hw:xencelabs-quickkeys

https://wiki.pup.casa/ Printed on 2025/09/09 01:36

Linux Drivers

Somehow never occurred to me that the linux driver package might shed more light on how the
software and hardware interact.

The Linux download contains packages for RPM and dpkg-based distros, as well as a tarball with
installation scripts - the most obvious point for examination. It contains normal XDG stuff for startup,
application registration and so on, but also contains udev rules:

10-xencelabs.rules

KERNEL=="uinput",MODE:="0666",OPTIONS+="static_node=uinput"
SUBSYSTEMS=="usb",ATTRS{idVendor}=="28bd",MODE:="0666"

It also contains the actual software and a set of Qt5 libraries. The application itself is invoked via a
script which exports LD_LIBRARY_PATH beforehand.

The application binary is (predictably) a dynamically-linked ELF built for amd64.

Plans

Get USB packet captures of:

Initial communication between the software and the device itself
Initial communication between the software and the dongle
Configuring the pairing for the dongle and the device
Configuring the device
Changing the sleep time and screen brightness

Check any network communications the software makes.

Application has references to several hostnames/API servers, all ending with /api
www,xencelabs,com
www,newtest,xencelabs,com,cn
www,xencelabs,com,cn
www,xencelabs,com/ctrad
www,xencelabs,com/{fr|de|jp|kr|it|es}
www,zs,xencelabs,cc

Checks for updates to itself by calling {API
server}/getLatestDriver?system_sign={mac|win|linux}&language={en|?} -
returns a JSON payload
Checks for firmware updates by calling {API
server}/getLatestFirmware?project_sign={?} - presumably returns a JSON payload,
no idea what project_sign is though

https://wiki.pup.casa/_export/code/notes:hw:xencelabs-quickkeys?codeblock=0

2025/09/09 01:36 5/5 Notes on the XenceLabs Quick Keys

pup.casa Docs - https://wiki.pup.casa/

Notes during reverse-engineering

Both the dongle and the direct USB connection expose a USB Usage with page FF0Ah

Not 100% on packet/HID report format, but..

All writes are 32-byte packets
Bytes 10-15 inclusive are the MAC address of the device, or zeroes if connected via USB instead
of the dongle
Byte 0 is always 0x02 - this is the endpoint I think
Data is only sent from the device once it has been subscribed to:
02b410 - Subscribes to battery change events
02b004 - Subscribes to button press and wheel events
02b801 - Subscribes to dongle connection events

Commands/opcodes are as follows (an ampersand followed by a number indicates an
argument/parameter)

02b40801&0 - Set the idle timeout in minutes between 0 and 255
02b4040101&0 - Set the velocity (poll rate?) of the wheel (5 = slowest, 1 = fastest)
02b10a01&0 - Set the display brightness (0 = off, 3 = highest)
02b1&0 - Set the display rotation (0 = 0º, 3 = 270º)
02b40101&0&1&2 - Set the RGB colour value of the ring around the wheel (0-255, 0-255,
0-255)
02b100&000&1000000000000000000000000000000&2… - Set the label for one of the eight
macro keys (arg0 is the key number from 1 to 8, arg1 is the length of the label text * 2, arg2 is
the label text encoded as unicode/utf16le) - the device seems able to take a label length up to
24 characters but i've not identified how it receives characters after the 8th.
02b1&0&100&2&3 - Display an “overlay” message (arg0 indicates if it is the first message, 5, or
a continuation of the message, 6. arg1

Links

https://github.com/julusian/node-xencelabs-quick-keys - NodeJS implementation of the HID interface

From:
https://wiki.pup.casa/ - pup.casa Docs

Permanent link:
https://wiki.pup.casa/notes:hw:xencelabs-quickkeys

Last update: 2023/06/26 14:17

https://github.com/julusian/node-xencelabs-quick-keys
https://wiki.pup.casa/
https://wiki.pup.casa/notes:hw:xencelabs-quickkeys

	Notes on the XenceLabs Quick Keys
	Hardware info
	Software info
	Firmware info
	Observations relating to the stock software and firmware
	Observations relating to the hardware
	The dongle
	Linux Drivers
	Plans
	Notes during reverse-engineering
	Links

